A STUDY OF AZOLIDONES AND THEIR DERIVATIVES.

III. * The Synthesis and Certain Transformations of 4-Thioxo-5-alkylthiazolidones-2

N. E. Plevachuk and I. D. Komaritsa

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 6, No. 2, pp. 159-160, 1970 UDC 547.789.3.07

A study was made of the reaction of 5-alkylthiazolidindiones-2, 4 (I) with P_2S_5 in a medium of dioxane. 4-Thioxo-derivatives of compound I were obtained which readily react with ammonia and amines with the formation of 4-imino- and 4-arylimino-derivatives.

It is well known that the synthesis of various 4-substituted derivatives of thiazolidindione-2, 4 proceeds with difficulty because of the inert nature of the oxo group in position 4 [2]. Replacement of the oxygen atom by sulfur markedly activates this position and makes possible the synthesis of a number of new substances [3].

X == C --- N H

Compound	R	х	Mp °C (decomp.)	Empirical formula	Found, %		Calcu- lated, %		d, %
					N	s	N	s	Yield,
11	CH ₃	S	110*	C ₄ H ₅ NOS ₂	9.3	43,3	9.5	43.5	55
ıii		S S S	108*	C5H7NOS2	8.9	39,9	8.6	39.7	
ΪV		S	83*	C ₆ H ₉ NOS ₂	8.2	36.7	7.9		
v		C ₆ H ₅ N	190	C ₁₀ H ₁₀ N ₂ OS	13.8	15.0	13.5	15.5	
VI		C_6H_5N	174*	C ₁₁ H ₁₂ N ₂ OS	12.8	14.6	12.7	14.5	
VII	(CH ₃) ₂ CH	C_6H_5N	193	C12H14N2OS	12.2	13.2	11.9	13.6	
VIII		Py—CONHN**	179*	C10H10N4O2S	22.5	13.0	22.3	12.8	
IX	C ₂ H ₅	Py-CONHN**	167*	C11H12N4O2S	21.2	12.1	21.2	12.1	
X	(CH ₃) ₂ CH	Py—CONHN**	175*	$C_{12}H_{14}N_4O_2S$	20.3	11,6	20.1	11.5	
ΧI	CH ₃	C_6H_5NHN	231*	$C_{10}H_{11}N_3OS$	19.3	14.5	19,0	14,5	
XII	C_2H_5	C_6H_5NHN	131	C11H13N3OS	17.7	13.3	17.8	13.6	
XIII		C ₆ H ₅ NHN	149*	C ₁₂ H ₁₅ N ₃ OS	16.9	12.9	16.8		
XIV		NH	194	C ₄ H ₆ N ₂ OS	21.3		21.5		
XV		NH	211	C ₅ H ₈ N ₂ OS	19.0	22.5 20.3	19.4 17.7		
XVI		NH	236—238	C ₆ H ₁₀ N ₂ OS	17.7	15.65			
XVII		NH	266	C ₁₀ H ₈ N ₂ OS	11.28				
XVIII		NH	248	C ₁₄ H ₁₀ N ₂ OS	10.82	19 35	10.02	19 14	150
XIX	3,4- (OCH ₃) ₂ C ₆ H ₃ CH	NH	260	$C_{12}H_{12}N_2O_3S$	10.82	12.30	10.01	16.14	100

^{*}Melt without decomposition

In the present work a study was made of the reaction in which 4-thioxo-5-alkylthiazolidones-2 (II-IV) are obtained and their conversion into 4-imino- and 4-aryliminoderivatives (V-XVI). During the interaction of compound I with P_2S_5 in a medium of dioxane, the 4-thioxoderivatives of compound I (II-IV) were obtained in which the thionyl group is distinguished by its enhanced activity. On heating compounds II-IV readily condense with amines and ammonia with the formation of the corresponding 4-iminoderivatives (V-XVI). The structure of the products formed on interaction with ammonia (XIV-XIX) was proved in the case of compound XIV by acid hydrolysis, during which the corresponding derivative of compound I is formed. Phenylhydrazine reacts with compound II-IV in the cold on mixing equimolar quantities of the original substances in methanol.

One should note that the presence of the arylidene residue in position 5 does not affect the activity of the sulfur atom in position 4. The 5-arylidene derivatives of isorhodanine [4] react with concentrated ammonia in an analogous manner to compound II with the formation of the corresponding 4-imino-5-arylidene derivatives of compound I (XVII-XIX.

^{**}Py, pyridyl-4

^{*}For part II, see [1].

EXPERIMENTAL

- 5-Alkylthiazolidindiones-2, 4(Ia-Ic) were obtained according to a previously described method [5].
- 4-Thioxo-5-alkylthiazolidones-2 (II-IV) were obtained by boiling a mixture of 0.04 mole of 5-alkylthiazolidindione-2, 4 (Ia-Ic), 0.014 mole of P_2S_5 , and 10 ml of absolute dioxane for 4 hr. After boiling with active charcoal, the solution was filtered and the dioxane was distilled under vacuum. The dry residue was crystallized from water (yellow needles).
- 4-Imino-5-alkyl(arylidene)thiazolidones-2(V-X, XIV-XIX) A solution containing 0.01 mole of the corresponding thione (II-IV) and 0.01 mole of aniline or hydrazine of isonicotinic acid in 10 ml methanol was boiled for 1 hr. Compounds XIV-XIX are obtained by heating 0.01 mole of the corresponding thione with 6 ml of conc ammonia for 15 min in a boiling water bath. After cooling, the precipitate was removed by filtration and washed with water or methanol. The compound was crystallized from methanol or water (colorless crystals); compounds XVII and XIX were crystallized from acetic acid and compound XVIII was crystallized from dioxane.
- 4-Phenylhydrazones of 5-alkylthiazolidindiones (XI-XIII) were obtained in an analogous manner to compounds V-X, only the reactions proceeded at room temperature. Colorless needles crystallized out from methanol.

Acid hydrolysis of compound XIV. A 0.01 mole quantity of compound XIV and 5 ml of 5% HCl were boiled for 15 min, the mixture was cooled, and the precipitate was removed by filtration. After crystallization from water the melting point was 41° C without depression in a mixture with a known sample of 5-methylthiazolidindione-2, 4 [5].

REFERENCES

- 1. I. D. Komaritsa and N. E. Plevachuk, KhGS [Chemistry of Heterocyclic Compounds], collection 3, 1970, (in press).
 - 2. N. M. Turkevich, N. K. Ushenko, and I. I. Kuz'mak, Ukr. khim. zhurn., 14, 126, 1949.
- 3. A. P. Grishchuk, I. D. Komaritsa, and S. N. Baranov, KhGS [Chemistry of Heterocyclic Compounds], 706, 1966.
- 4. I. D. Komaritsa, S. N. Baranov, and A. P. Grishchuk, KhGS [Chemistry of Heterocyclic Compounds], 664, 1967.
 - 5. A. F. Minka, KhFZh, 4, 24, 1963.

4 July 1967

L'vov Medical Institute